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1.[7] Let F(x, y, z) = y2 î + x2 ĵ + z2 k̂ be a vector field. Show that

∇ × (∇ × F) − ∇(∇ · F) + ∇2F = 0 .

[ In general for the vector field F(x, y, z) = P(x, y, z) î + Q(x, y, z) ĵ + R(x, y, z) k̂,

∇2F =
( ∂2P
∂x2 +

∂2P
∂y2 +

∂2P
∂z2

)
î +

( ∂2Q
∂x2 +

∂2Q
∂y2 +

∂2Q
∂z2

)
ĵ +

( ∂2R
∂x2 +

∂2R
∂y2 +

∂2R
∂z2

)
k̂ .]



DATE: April 9, 2018

EXAMINATION: Engineering Mathematical Analysis 3
COURSE: MATH 3132

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 2 of 13
TIME: 3 hours

EXAMINER: G.I. Moghaddam

2.[9] Evaluate the surface integral
"

S
(x î + y ĵ) · n̂ dS , where S is that part of the

paraboloid z = x2 + y2 bounded by the surfaces x = ±1 and y = ±1 and n̂ is the
unit lower normal vector.
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3.[10] Evaluate
∮

C
[ (3x2 − 4y3) dx + (4x3 − 4xy2) dy + xz dz ] , where C is the curve of

intersection of the sphere x2 + y2 + z2 = 6 and the paraboloid z =
√

5 (x2 + y2),
directed clockwise as viewed from the origin.
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4. Consider the differential equation 2x y′′ + (1 + 3x) y′ + 3y = 0 .

(a)[2] Is x = 0 an ordinary point for this differential equation? Why?

(b)[9] Use y =

∞∑
n=0

anxn to solve this differential equation. Express your answer in sigma

notation and simplify as much as possible. Is your solution a general solution?
Why?
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5. Let f (x) =

2 if −2 < x < −1 or 1 < x < 2
x2 if −1 < x < 0 or 0 < x < 1

, with f (x + 4) = f (x) .

(a)[3] Draw the graph of f (x) in the interval −6 ≤ x ≤ 6 .

x

y

0−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

1

2

3

4

−1

−2

−3

(b)[4] Draw the graph of the function g(x) to which the Fourier series of f (x) converges,
in the interval −6 ≤ x ≤ 6 . Give an algebraic description of g(x) .

x

y

0−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

1

2

3

4

−1

−2

−3

⇒Continued in the next page
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(c)[9] Find the Fourier series of f (x) and simplify as much as possible. Then use it to

find the sum
∞∑

n=1

1
n2 .

Hint: sin
nπ
2

=

0 if n = 2k
(−1)k−1 if n = 2k − 1

and cos
nπ
2

=

0 if n = 2k − 1
(−1)k if n = 2k

.
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6. Consider the Sturm-Liouville system

y′′ + 4 y′ + λ y = 0 , 0 < x < L ,
y(0) = 0 ,
y(L) = 0 .

(a)[3] Find the standard form of the Sturm-Liouville system. What is the weight function?

(b)[7] Given that λ ≥ 4 , find all eigenvalues and eigenfunctions of this Sturm-Liouville
system.
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7.[7] A string with constant linear density ρ is stretched tightly between the points x = 0
and x = 12 on the x-axis. The tension in the string is a constant τ . The displacement
of the string at time t = 0 is shown in the figure below, and from this position, it is rele-
ased. The right end of the string is fixed on the x-axis, but the left end is looped around
a vertical rod, and can move vertically without friction. A restoring force proportional
to displacement and also gravity are taken into account. What is the initial-value pro-
blem for displacement y(x, t) of the string? Include the partial differential equation,
and all boundary and initial conditions, and include intervals on which they must be
satisfied.
y

x1 2 3 4 5 6 7 8 9 10 11 12
0

5
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8.[20] Solve the following initial boundary value problem for the temperature in a homoge-
neous isotropic rod with insulated sides and with no internal heat generation.

∂U
∂t

= k
∂2U
∂x2 , 0 < x < L , t > 0

U(0, t) = 0 , t > 0
Ux(L, t) = 0 , t > 0
U(x, 0) = 2L − 3x , 0 < x < L

Is there any point on the rod at which initially temperature is 0? Why?
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Extra space for solution of question 8
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BLANK PAGE FOR ROUGH WORK
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Sturm Liouville Systems of form y′′ + λ y = 0

Boundary Conditions Eigenvalues Eigenfunctions

y(0) = 0 = y(L) λn =
n2π2

L2 , n ≥ 1 yn(x) = sin
nπx
L

y′(0) = 0 = y′(L) λn =
n2π2

L2 , n ≥ 0 y0(x) = 1 , yn(x) = cos
nπx
L

y(0) = 0 = y′(L) λn =
(2n − 1)2π2

4L2 , n ≥ 1 yn(x) = sin
(2n − 1)πx

2L

y′(0) = 0 = y(L) λn =
(2n − 1)2π2

4L2 , n ≥ 1 yn(x) = cos
(2n − 1)πx

2L

Answers:
Q1) ∇ × (∇ × F) = (−2,−2, 0) , ∇(∇ · F) = (0, 0, 2) and ∇2F = (2, 2, 2) ;
therefore LHS= (−2,−2, 0) − (0, 0, 2) + (2, 2, 2) = (0, 0, 0) =RHS.

Q2)
16
3

Q3) 5π

Q4) Part (a): x = 0 is a singular point.

Part (b): y = a0

∞∑
n=0

(−1)n 6n n!
(2n)!

xn and it is not a general solution.

Q5) Part (b): g(x) =


f (x) if x , n
0 if x = 4n
3
2

if x = 4n + 1

2 if x = 4n + 2

, where n = ±0 ,±1 ,±2 , · · · .

Part (c): g(x) =
7
6

+
2
π2

∞∑
n=1

(−1)n

n2 cos nπx−
2
π

∞∑
n=1

[(
1

2n − 1
+

8
(2n − 1)3 )(−1)n−1] cos

(2n − 1)πx
2

then use g(1) =
3
2

to get
∞∑

n=1

1
n2 =

π2

6
.

Q6) Part (a):
d
dx

(e4xy′) + λ(e4x − 0)y = 0 and the weight function is p(x) = e4x.

Part (b): y(x) = C2e−2x sin
nπx
L

, n ≥ 0.
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Q7)
∂2y
∂t2 = c2 ∂

2y
∂x2 − g −

ky
ρ
, 0 < x < 12 , t > 0, c2 =

τ

ρ
, k > 0

y(12, t) = 0 , t > 0
yx(0, t) = 0 , t > 0
yt(x, 0) = 0 , 0 < x < 12

y(x, 0) =

2x −
1
5

x2 if 0 ≤ x ≤ 10

0 if 10 ≤ x ≤ 12
.

Q8) U(x, t) =

∞∑
n=1

[
8L

(2n − 1)π
−

24L (−1)n−1

(2n − 1)2π2 ] sin
(2n − 1)πx

2L
e
−

(2n − 1)2π2

4L2 kt
and it is

a formal solution.


