EXAMINATION: Engineering Mathematical Analysis 3
COURSE: MATH $\overline{3132}$
EXAMINER: G.I. Moghaddam

NAME: (Print in ink) \qquad

STUDENT NUMBER: \qquad

SEAT NUMBER: \qquad

SIGNATURE: (in ink) \qquad
(I understand that cheating is a serious offense)

INSTRUCTIONS TO STUDENTS:

This is a 3 hour exam. Please show your work clearly.

No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic translators permitted.

This exam has a title page, 9 pages of questions and two blank pages together with a formulas sheet. Please check that you have all the pages. You may remove the last two pages if you want, but be careful not to loosen the staple.

The value of each question is indicated in the left hand margin beside the statement of the question. The total value of all questions is 90 points.

Answer all questions on the exam paper in

Question	Points	Score
1	7	
2	9	
3	10	
4	11	
5	16	
6	10	
7	7	
8	20	
Total:	90	

[7] 1. Let $\mathbf{F}(x, y, z)=y^{2} \hat{\mathbf{i}}+x^{2} \hat{\mathbf{j}}+z^{2} \hat{\mathbf{k}}$ be a vector field. Show that

$$
\nabla \times(\nabla \times \mathbf{F})-\nabla(\nabla \cdot \mathbf{F})+\nabla^{2} \mathbf{F}=\mathbf{0}
$$

[In general for the vector field $\mathbf{F}(x, y, z)=P(x, y, z) \hat{\mathbf{i}}+Q(x, y, z) \hat{\mathbf{j}}+R(x, y, z) \hat{\mathbf{k}}$,

$$
\left.\nabla^{2} \mathbf{F}=\left(\frac{\partial^{2} P}{\partial x^{2}}+\frac{\partial^{2} P}{\partial y^{2}}+\frac{\partial^{2} P}{\partial z^{2}}\right) \hat{\mathbf{i}}+\left(\frac{\partial^{2} Q}{\partial x^{2}}+\frac{\partial^{2} Q}{\partial y^{2}}+\frac{\partial^{2} Q}{\partial z^{2}}\right) \hat{\mathbf{j}}+\left(\frac{\partial^{2} R}{\partial x^{2}}+\frac{\partial^{2} R}{\partial y^{2}}+\frac{\partial^{2} R}{\partial z^{2}}\right) \hat{\mathbf{k}} .\right]
$$

UNIVERSITY OF MANITOBA

DATE: April 9, 2018
FINAL EXAMINATION
PAGE: 2 of 13
EXAMINATION: Engineering Mathematical Analysis 3
TIME: 3 hours
COURSE: MATH $\overline{3132}$ EXAMINER: G.I. Moghaddam
[9] 2. Evaluate the surface integral $\iint_{S}(x \hat{\mathbf{i}}+y \hat{\mathbf{j}}) \cdot \hat{\mathbf{n}} d S$, where S is that part of the paraboloid $z=x^{2}+y^{2}$ bounded by the surfaces $x= \pm 1$ and $y= \pm 1$ and $\hat{\mathbf{n}}$ is the unit lower normal vector.

UNIVERSITY OF MANITOBA

DATE: April 9, 2018
FINAL EXAMINATION
PAGE: 3 of 13
EXAMINATION: Engineering Mathematical Analysis 3
TIME: 3 hours
COURSE: MATH $\overline{3132}$ EXAMINER: G.I. Moghaddam
[10] 3. Evaluate $\oint_{C}\left[\left(3 x^{2}-4 y^{3}\right) d x+\left(4 x^{3}-4 x y^{2}\right) d y+x z d z\right]$, where C is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=6$ and the paraboloid $z=\sqrt{5}\left(x^{2}+y^{2}\right)$, directed clockwise as viewed from the origin.

UNIVERSITY OF MANITOBA

DATE: April 9, 2018
EXAMINATION: Engineering Mathematical Analysis 3
4. Consider the differential equation $2 x y^{\prime \prime}+(1+3 x) y^{\prime}+3 y=0$.
[2] (a) Is $x=0$ an ordinary point for this differential equation? Why?
(b) Use $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ to solve this differential equation. Express your answer in sigma notation and simplify as much as possible. Is your solution a general solution? Why?

UNIVERSITY OF MANITOBA

DATE: April 9, 2018

EXAMINATION: Engineering Mathematical Analysis 3
COURSE: MATH $\overline{3132}$
EXAMINER: G.I. Moghaddam
5. Let $f(x)=\left\{\begin{array}{ll}2 & \text { if }-2<x<-1 \text { or } 1<x<2 \\ x^{2} & \text { if }-1<x<0 \text { or } 0<x<1\end{array}\right.$, with $f(x+4)=f(x)$.
[3] (a) Draw the graph of $f(x)$ in the interval $-6 \leq x \leq 6$.

[4] (b) Draw the graph of the function $g(x)$ to which the Fourier series of $f(x)$ converges, in the interval $-6 \leq x \leq 6$. Give an algebraic description of $g(x)$.

UNIVERSITY OF MANITOBA

DATE: April 9, 2018
PAGE: 6 of 13
EXAMINATION: Engineering Mathematical Analysis 3
TIME: 3 hours
COURSE: MATH $\overline{3132}$ EXAMINER: G.I. Moghaddam
[9] (c) Find the Fourier series of $f(x)$ and simplify as much as possible. Then use it to find the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
Hint: $\sin \frac{n \pi}{2}=\left\{\begin{array}{ll}0 & \text { if } n=2 k \\ (-1)^{k-1} & \text { if } n=2 k-1\end{array} \quad\right.$ and $\quad \cos \frac{n \pi}{2}= \begin{cases}0 & \text { if } n=2 k-1 \\ (-1)^{k} & \text { if } n=2 k\end{cases}$

UNIVERSITY OF MANITOBA

DATE: April 9, 2018
EXAMINATION: Engineering Mathematical Analysis 3
TIME: 3 hours
COURSE: MATH $\overline{3132}$ EXAMINER: G.I. Moghaddam
6. Consider the Sturm-Liouville system

$$
\begin{aligned}
y^{\prime \prime}+4 y^{\prime}+\lambda y & =0, \quad 0<x<L, \\
y(0) & =0, \\
y(L) & =0 .
\end{aligned}
$$

[3] (a) Find the standard form of the Sturm-Liouville system. What is the weight function?
[7] (b) Given that $\lambda \geq 4$, find all eigenvalues and eigenfunctions of this Sturm-Liouville system.

EXAMINATION: Engineering Mathematical Analysis 3
COURSE: MATH $\overline{3132}$
EXAMINER: G.I. Moghaddam
[7] 7. A string with constant linear density ρ is stretched tightly between the points $x=0$ and $x=12$ on the x-axis. The tension in the string is a constant τ. The displacement of the string at time $t=0$ is shown in the figure below, and from this position, it is released. The right end of the string is fixed on the x-axis, but the left end is looped around a vertical rod, and can move vertically without friction. A restoring force proportional to displacement and also gravity are taken into account. What is the initial-value problem for displacement $y(x, t)$ of the string? Include the partial differential equation, and all boundary and initial conditions, and include intervals on which they must be satisfied.

UNIVERSITY OF MANITOBA

DATE: April 9, 2018
EXAMINATION: Engineering Mathematical Analysis 3
TIME: 3 hours
COURSE: MATH $\overline{3132}$ EXAMINER: G.I. Moghaddam
[20] 8. Solve the following initial boundary value problem for the temperature in a homogeneous isotropic rod with insulated sides and with no internal heat generation.

$$
\begin{aligned}
\frac{\partial U}{\partial t} & =k \frac{\partial^{2} U}{\partial x^{2}} \quad, \quad 0<x<L \quad, \quad t>0 \\
U(0, t) & =0 \quad, \quad t>0 \\
U_{x}(L, t) & =0 \quad, \quad t>0 \\
U(x, 0) & =2 L-3 x \quad, \quad 0<x<L
\end{aligned}
$$

Is there any point on the rod at which initially temperature is 0 ? Why?

BLANK PAGE FOR ROUGH WORK

EXAMINATION: Engineering Mathematical Analysis 3

Sturm Liouville Systems of form $y^{\prime \prime}+\lambda y=0$

Boundary Conditions	Eigenvalues	Eigenfunctions
$y(0)=0=y(L)$	$\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, n \geq 1$	$y_{n}(x)=\sin \frac{n \pi x}{L}$
$y^{\prime}(0)=0=y^{\prime}(L)$	$\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}, n \geq 0$	$y_{0}(x)=1, y_{n}(x)=\cos \frac{n \pi x}{L}$
$y(0)=0=y^{\prime}(L)$	$\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}, n \geq 1$	$y_{n}(x)=\sin \frac{(2 n-1) \pi x}{2 L}$
$y^{\prime}(0)=0=y(L)$	$\lambda_{n}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}, n \geq 1$	$y_{n}(x)=\cos \frac{(2 n-1) \pi x}{2 L}$

Answers:

Q1) $\nabla \times(\nabla \times \mathbf{F})=(-2,-2,0), \nabla(\nabla \cdot \mathbf{F})=(0,0,2)$ and $\nabla^{2} \mathbf{F}=(2,2,2)$; therefore LHS $=(-2,-2,0)-(0,0,2)+(2,2,2)=(0,0,0)=$ RHS.

Q2) $\frac{16}{3}$
Q3) 5π

Q4) Part (a): $x=0$ is a singular point.
Part (b): $y=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n} 6^{n} n!}{(2 n)!} x^{n}$ and it is not a general solution.

Q5) Part (b): $g(x)=\left\{\begin{array}{ll}f(x) & \text { if } x \neq n \\ 0 & \text { if } x=4 n \\ \frac{3}{2} & \text { if } x=4 n+1 \\ 2 & \text { if } x=4 n+2\end{array} \quad\right.$, where $n= \pm 0, \pm 1, \pm 2, \cdots$.
Part (c): $g(x)=\frac{7}{6}+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n \pi x-\frac{2}{\pi} \sum_{n=1}^{\infty}\left[\left(\frac{1}{2 n-1}+\frac{8}{(2 n-1)^{3}}\right)(-1)^{n-1}\right] \cos \frac{(2 n-1) \pi x}{2}$ then use $g(1)=\frac{3}{2}$ to get $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Q6) Part (a): $\frac{d}{d x}\left(e^{4 x} y^{\prime}\right)+\lambda\left(e^{4 x}-0\right) y=0$ and the weight function is $p(x)=e^{4 x}$.
Part (b): $y(x)=C_{2} e^{-2 x} \sin \frac{n \pi x}{L}, n \geq 0$.

Q7)

$$
\begin{aligned}
& \frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}-g-\frac{k y}{\rho}, \quad 0<x<12, \quad t>0, \quad c^{2}=\frac{\tau}{\rho}, \quad k>0 \\
& y(12, t)=0, \quad t>0 \\
& y_{x}(0, t)=0, \quad t>0 \\
& y_{t}(x, 0)=0, \quad 0<x<12 \\
& y(x, 0)= \begin{cases}2 x-\frac{1}{5} x^{2} & \text { if } 0 \leq x \leq 10 \\
0 & \text { if } 10 \leq x \leq 12\end{cases}
\end{aligned}
$$

Q8) $U(x, t)=\sum_{n=1}^{\infty}\left[\frac{8 L}{(2 n-1) \pi}-\frac{24 L(-1)^{n-1}}{(2 n-1)^{2} \pi^{2}}\right] \sin \frac{(2 n-1) \pi x}{2 L} e^{-\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}} k t}$ and it is a formal solution.

